Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Applied Pharmaceutics ; 14(Special Issue 4):1-6, 2022.
Article in English | EMBASE | ID: covidwho-2262165

ABSTRACT

This study aimed to review zinc's effectiveness as an antivirus in treating herpes simplex virus infection. The authors use international journals published from 2000-2022, and use search engines such as Google Scholar, PubMed, and Science Direct with the keywords "zinc and herpes simplex virus". The herpes simplex virus that often causes symptoms in humans are HSV type 1 and type 2. The lesions appear as vesicles which then rupture into ulcers. Zinc is one of the most abundant nutrients or metals in the human body besides iron. Studies about the effects of zinc on HSV have shown that it has the function of inhibiting the viral life cycle. HSV attaches to the host cells to replicate and synthesize new viral proteins. Zinc can inhibit this process by depositing on the surface of the virion and inactivating the enzymatic function which is required for the attachment to the host cell, disrupting the surface glycoprotein of the viral membrane so it could not adhere and carry out the next life cycle, it can also inhibit the function of DNA polymerase that works for viral replication in the host cell. This article showed that zinc has effectiveness as an antivirus against the herpes simplex virus, therefore, patients infected with HSV can be treated with zinc as an alternative to an antivirus drug.Copyright © 2022 The Authors. Published by Innovare Academic Sciences Pvt Ltd.

2.
Clin Epigenetics ; 13(1): 210, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1533277

ABSTRACT

BACKGROUND: The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. MAIN BODY: Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. CONCLUSION: Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.


Subject(s)
Aging/physiology , Epigenesis, Genetic/physiology , Epithelial Cells/pathology , Thymus Gland/pathology , Atrophy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL